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We study a dynamics tor the magnetization of the random field Curie-Weiss
model. A metastable behavior is exhibited and asymptotic estimates on the
speed of convergence to equilibrium are given. The results are given almost
surely and in law with respect to the realizations of the random magnetic fields.
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1. INTRODUCTION

The study of disordered statistical mechanics is one of the most important
subject of the last decade in mathematical physics. A lot of progresses have
been done on the equilibrium properties of these systems. Even if the
problem of the spin glass phase is still a challenging one, some disordered
systems are well understood. Good examples are random fields models.
Rigorous results concerning the controversial lower critical dimension d1

(above which there is symmetry breaking) of the random field Ising model
were given by J. Bricmont and A. Kupiainen(l6) in 1988, they proved that
long ranged order exists for the random field Ising model in dimension
greater or equal 3, which implies that d1 <2. It was later proved by
M. Aizenman and J. Wehr(2) that such a long range order does not exist in
dimension 2, this implies that d1>2, hence d1 = 2. This proved that the
Imry-Ma scaling argument(36) was in fact correct. Previous convincing
arguments in this direction had been given by D. Fisher, J. Frohlich, and
T. Spencer(27) and by J. Chalker.(20) J. Imbrie(35) had proved that at zero



temperature the ground state is ordered for d=3, a result that suggests
that d1<2. One dimensional models with short range interactions have
been studied by A. Beretti,(8) P. Bleher, J. Ruiz, and V. Zagrebnov(9) and
with long range interactions by M. Aizenman and J. Wehr(2) where absence
of long range order is proved for one dimensional models with interactions
between spins at sites i and j decaying like \i — j\3/2 + e.

Mean field theory is a nice way to make a simple model that presents
a symmetry breaking phenomenon, see R. Ellis.(26) The Curie-Weiss model
is a simple model to explain the phenomena of ferromagnetism, that is the
appearence of a spontaneous magnetization at low temperature. Even if
mean fields models in general display unphysical properties, they have
always been a good starting point to test new ideas. The mean field ver-
sions of random fields models were first considered by T. Schneider and
E. Pytte(61) with a Gaussian distribution for the magnetic fields. The dis-
crete distribution case was first considered by A. Aharony.(1) The complete
study of the phase diagram of this model is given by S. Salinas and
W. Wreszinski,(60) the fluctuations of the order parameter are studied by
J. Amaro de Matos and J. Perez,(3) and the Gibbs states by J. Amaro de Matos,
A. Patrick, and V. Zagrebnov.(4) In a very recent paper, C. Kiilske(37) studies
the notion of metastates, introduced by C. Newman and D. Stein.(52-54)
The Random field Curie-Weiss model has the advantage to be sufficiently
rich and to be almost completely solvable. There are other mean field
models for disordered systems. The Sherrington and Kirkpatrick model was
invented to explain the spin glass phase transition, it is still a challenging
problem to solve it, see refs. 48 and 63. Another famous disordered mean
field model is the Hopfield model, a lot of progresses have been done the
last decade by A. Bovier and V. Gayrard and A. Bovier, V. Gayrard, and
P. Picco.(10-15) There is a multibody version of the Sherrington and
Kirkpatrick model called the Random Energy Model that was introduced
by B. Derrida,(23, 24) and a lot of results have been obtained by E. Olivieri
and P. Picco(56) and A. Galves, S. Martinez, and P. Picco.(30) All these
results concern static properties. The Dynamics for the Curie-Weiss model
was studied by R. Griffiths, C.-H. Weng, and J. Langer(32) and in a
rigorous way in the fundamental paper of M. Cassandro, A. Galves,
E. Olivieri, and M.-E. Vares.(18) Dynamics for mean field disordered
systems was studied by G. Ben Arous and A. Guionnet for a soft spins
version of the Sherrington and Kirkpatrick model,(6, 7) and for a discrete
spin version by M. Grunwald,(33) however this is for fixed time scale.
The McKean-Vlasov limit of a dynamics for Curie-Weiss random field
Ising model was obtained by P. Dai Pra and F. Den Hollander.(21) There,
also, the time scale is fixed. In a recent article L. R. Fontes, M. Isopi,
Y. Koyashawa, and P. Picco(28) study the convergence to equilibrium of
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the Random Energy Model, by giving asymptotic estimates of the spectral
gap, they work on a time scale which is of the order of an exponential in
the volume.

Another important subject of modern statistical mechanics is the
study of metastable behavior of stochastic spin systems. See the book of
T. Liggett(40) for historical facts and basic background on stochastic spin
systems. The notion of metastable behavior is a very old one and comes for
experiments on the liquid-vapor transition in the middle of the last century.
The arguments of Van der Waals against the Maxwell modification of the
Van der Waals equation of state were based on the existence of metastable
states that are observed experimentaly as supersaturated vapor and super-
cooled liquid. The metastable behavior is a dynamical behavior, where a
system remains for a very long time in an apparent equilibrium, which is
called the metastable state, then very quickly relaxes to the true equi-
librium state. On the correct time-scale, the process therefore behaves like
a pure jump process with two states.

The rigorous formulation of metastable states was given by O. Penrose
and J. L. Lebowitz.(58) A new point of view was introduced by M. Cassandro,
A. Galves, E. Olivieri, and M. E. Vares(18) under the name of "Pathwise
approach to metastability." As a basic example, they establish the meta-
stability of the Curie-Weiss model. Even if it is the unphysical non con-
vexity of the canonical free energy which is responsible of the metastable
behavior of this model, the pathwise approach proved to be an efficient
concept to describe dynamical properties of more realistic models. Indeed
metastability was later proved for random perturbations of dynamical
systems of Freidlin and Wentzel type(29) by A. Galves, E. Olivieri,
and M. E. Vares(31) in finite dimension and by M. Cassandro, E. Olivieri,
and P. Picco,(19) F. Martinelli, E. Olivieri, and E. Scoppola(43) and
S. Brassesco(8) in the infinite dimensional case. The pathwise approach
to metastability was extended to spin systems as the two dimensional
stochastic Ising model by R. Schonmann and J. Neves,(55) for the
Swendsen-Wang dynamic by F. Martinelli, E. Olivieri, and E. Scoppola,(41)

the generalization to other 2 dimensional lattice systems was done by
R. Kotecky and E. Olivieri,(38, 39) E. Cirillo and E. Olivieri(25) and F. Nardi
and E. Olivieri.(51) Metastability of the three dimensional Ising model has
been studied by G. Ben Arous and R. Cerf.(5) All those results are for a
fixed large volume, a fixed magnetic field h and vanishing temperature (B
very large). The case of large volume, B fixed and h!0 was studied by
R. Schonmann.(62)

The usual technics used to prove metastability are based on either
explicit computations or on large deviation estimates. Explicit computa-
tions of moments of hitting times for a birth and death process related to
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the dynamics of the deterministic Curie-Weiss model are possible in ref. 18
only because we are in a one-dimensional situation. As we shall see, to
describe the random field Curie-Weiss model, it is necessary to introduce
two order parameters. Therefore the technics used by ref. 18 are not
directly applicable. Large deviation technics can often yield sharp estimates
on hitting times. For instance a mixture of large deviation and partial dif-
ferential equations technics is used to prove the exponentiality of some exit
times by M. Williams(64) and M. Day.(22) However we chose a different,
and in some sense more direct, approach based on spectral estimates.
Remember that we want to show that our process has the following
behavior: it quickly reaches the metastable state, remains there for a long
time and then jumps to the invariant state. The idea of the proof is that it
is sufficient to show that, on the correct time scale, only two states remain.
Since the markovian nature of the process cannot be lost, we automatically
get that the jump from one state to the other one occurs at an exponential
time, i.e., the unpredictability property of the escape from metastability.
Using a spectral decomposition of the generator of the process, one can
express its law as a linear combination of eigenvectors. Proving that only
two states remain amounts to proving that only two terms remain in this
sum. This is achieved via estimates of the eigenvalues. At this point we
obtain a rather abstract statement: the process is indeed metastable but the
metastable state is given in terms of some eigenvector and the time scale is
given as an eigenvalue. With a little more work we identify the metastable
state. It is also shown that, on the exponential scale, the escape time is
given by the activation energy. Let us stress the fact that eigenvalues are
natural objects to consider: indeed the spectral gaps we compute are
relaxation times for the metastable and the stable states. Dirichlet eigen-
values are related to hitting times, in our case, the escape time from
metastability. The technic we adopt to estimate eigenvalues was introduced
by R. Holley, S. Kusuoka, and D. Stroock(34) to study simulated annealing.
It was extended to get not only the spectral gap but also other eigenvalues
and estimates on eigenvectors by P. Mathieu(45) and in L. Miclo(49) where
discrete and continuous state spaces are considered but rather strong
regularity are imposed. P. Mathieu was able to obtain long time asymp-
totics for extremely irregular potentials as Wiener medium including
metastability statements (See refs. 45, 46, and 47). The same approach was
further developed by L. Miclo(50) for a discrete state space. Our aim has
been to compute as little as possible and to reduce the problem of
metastability to a static problem as quickly as possible. In particular we
want to avoid computations on the fluctuations of the hamiltonian due to
the randomness of the external field. As opposed to the large deviation
point of view, we directly study the process on the metastable scale, in
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particular, we do not describe the behavior of the process on a finite (fixed)
time interval. The estimates we need are very robust because eigenvalues
are not sensitive to small variations of the free energy. This point is impor-
tant: at the microscopic level, the hamiltonian is very irregular because of
the disorder of the external field, but as the number of particules increases,
it becomes smooth as a consequence of the law of large numbers. We also
take advantage of the Markov property to deduce the exponentiality of the
escape time directly from rough asymptotics. The fact that the processes we
consider are all reversible plays an important role.

For this model, the hamiltonian is random but, as a consequence of
the law of large numbers, the free energy is deterministic. As far as static
properties are concerned, the metastable state is deterministic. Although
the support of the stable state is also a deterministic two points space, the
repartition of the weights of the stable state on its support is random, i.e.,
depends on the fluctuations of the external field. Similarly the metastable
scale is random although its order on the exponential scale is deterministic.
It is one of the interesting features of this model to be able to discuss
precisely the impact of the disorder of the medium on the dynamical
properties of the process.

The paper is organized as follows. In Chapter 2 we define the model
and the dynamics we consider. We state the main results. In Chapter 3 we
give asymptotic for various spectral quantities. In Chapter 4 we prove some
results for the static. In Chapter 5 we prove the theorems In the appendix
we make a lenghtly computation that link the Dirichlet form of the
dynamics on the spins to the ones induced on the empirical order
parameter. The reader might find more convenient to skip Sections 3 and
4 and go directly to the proof of the theorems in Section 5, assuming the
results of the previous sections.

2. THE MODEL AND MAIN RESULTS

Let (Q, Z, P) be a probability space on which is defined a family of
i.i.d.r.v. (hi)ieN with a Bernoulli distribution, that is P[h1=+l] =
p[h1, = - 1 ] = 1/2. Let Ln= { - 1, + 1}N and, given a e LN and (h,)i=1 =
(hi(w))i=1, define the random Hamiltonian:
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Since most of the quantities that will appear in this paper are random
variables on Q, we will never make explicit the w dependence of this
Hamiltonian, nor the one of the magnetic fields.



here ai is the configuration obtained from a by making a spin flip at the
site i, that is oj = oj for j = i and oi = —a,. For future use, we will denote
also Tia = ai. The continuous time Markov process, a N ( t ) defined on D
(U+, £N), the space of cadlag function on IR+ with value in £fN, is then
defined by the transition functions Pf(a-* a'} = Pf(«r, a') determined by
the forward equation (the Fokker-Planck equation)
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Let us denote by uN the Gibbs measure on f f N :

here ZN, the partition function in a volume N, is the normalization factor
to turn uN into a probability measure on yN.

Let us define the dynamics we consider. Given NeN, let LN be the
operator acting on real valued functions O on ffN:

with P0(o, o'} = \a(a'\ here D ( T (CT ' ) = O if CT'^CT, \a(a}=\. In (2.4), L^ is
the adjoint of LN, in fact (2.4) means, V?>0

for real valued (/> on ffN and

It is easy to check that this dynamics is reversible with respect to the
Gibbs measure, that is we have

i.e., the operator LN is symmetric on the space L2(,9'N,/>iN).
Then we have />f(<7, a') = (e'L^a,)(a).
One of the important features of mean field models is that the

Hamiltonian depends only on few parameters, in the Curie-Weiss model



we call P N = P N ( w ) = \N+\IN and PN= P N ( w ) = \N-\IN. Note that
PN + PN — 1. Moreover we have
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this parameter is the empirical magnetization. For the Random field model
there are in fact two parameters that we introduce now;

that is mN(o) (resp. mN(o)) is the empirical magnetization on the sites
where the magnetic field is positive (resp. negative). Note that we do not
normalize these quantities with the number of sites where the magnetic
field has a given sign but with the total number of sites. This choice has
some advantages The point is that the Hamiltonian (2.1) can be written in
term of these variables as

and is constant on spin configurations a that give the same value to the
pair m N ( o ) , m N ( o ) ) .

Therefore, calling MN, the random map from ,CN into [ —1, +1]2:
CT-> ( m N ( o ) , m N ( o ) ) , it is natural to consider the measure induced by
this map. Since this map is discrete valued, we need more definitions to
characterize its range as a discrete random subset of [ — 1, +1 ]2. Let
N + = N + ( ( w , N ) = {i: hi= +1} and N_ =N_(u>, N)= { / : /? ,= - 1}, and
note that
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that is if i e N+

and if i e N_

Now it is easy to check that if we call, with a little abuse of notation,
MN = MN((w} = MNyN the range of the the random map MN, we have

For a given pair (m + ,m - ) e MN we have

Therefore, if we denote by &N the measure induced by the map MN, we
have the following explicit formula for the density of GN with respect to the
uniform measure on MN:

here

Note that all the effects of the randomness coming from the magnetic
field are present in the fact that the set MN is a random subset of



It is not difficult to see that if 0 is large enough, then the only solution is
w = 0 and there exists a curve 6 = 0(B) such that if the parameters B > 0,
0 > 0 are above this curve and 0 is small enough, then there are three
solutions to the equation (2.21), one is m = 0 and the two others are
m = m* = m*(B, 0) and m = —m*. We will restrict ourself to this parameter
region. In this region of parameters, the three critical points are
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[ — 1, +1]2 and the only random parameter is pN. This factor converges
P-almost surely to 1/2, therefore, the limit TVf oo, of &N is the function J%
defined on [-1, +1]2.

here for xe [ — 1, +1],

Setting m = m + + m we get that m has to satisfy

and for \x\ > 1, I(x) = 0, is the entropy of Bernoulli random variables.
The critical points of 2F satisfy

Note that m0 is a saddle point and belongs to the line m+ +m- = 0, m, is
one absolute minima and belongs to the half plane m+ +m- >0, m2 being
the other minima. The basin of attraction of m1 is the triangle T1 =
[-1/2, +l /2] 2 n {m+ +m~ >0}. We define the cost in free energy to
leave the basin of attraction of m,

This quantity is fundamental for the study of metastable properties of the
model. It is called in the physic literature the activation energy.



We want to consider the dynamics on MN, induced by the dynamics
on yN and by the previous map MN. Since we were unable to find a
reference even for the simpler Curie-Weiss model, we make a part of the
computations here, another one will be done in the appendix.

We will check that JtN(aN(t}} is a Markov process with generator yN
in L\MN, fSN] given by

and Dirichlet form with respect to <§N

for a unique pair (e, e2) e { — 1, + 1}2. The term NN(m, m) is just

Note that J/'N is bounded from above by 1 and is bounded from below
by 2/N if m e J(N and mNeJ(N, in fact NN is zero if we attend to make a
jump outside MN. The same is true for NN. As we see later they are com-
pletely irrelevant on the time scales we are considering. In fact they even
cancel an irrelevant subdominant term that is diverging on the boundary
of MN, this subdominant term comes from the Stirling formula that will be
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with domain the set of real valued functions on MN. In (2.24) and (2.25),
m~m means that m and m communicate, that is, if m = (m + , m~)e^N

and m = (m + ,m~) e J(N, m~m if we have, see (2.12) and (2.13),

and ^N(m, m} is just



Therefore, if for any mN & MN, and aef/H such that mN = ̂ N(a) and
any m ~mN the quantity
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used for giving the asymptotic behavior of (2.15). The presence of these
terms is what make the difference between the dynamics on the empirical
order parameter mN induced by the dynamics on the spins and another
dynamics directly defined on ,WN which is also reversible with respect to the
canonical Gibbs measure f.1N. For this later dynamics, the factor JfN(m, m)
is not present in the generator nor JfN in the Dirichlet form. Note that
ref. 18 chose this later dynamics in their study of the usual Curie-Weiss
model, while ref. 32 chose the very same one as we did.

We want to check that the image by the map MN of the spin dynamics
is still a markovian dynamics with generator defined in (2.24) and Dirichlet
form defined in (2.25). To do that, let ,$N be the set of real valued functions
on ,C/'N that depend only on the magnetization (m^, m^). We just have to
check that the semi-group e'L" leaves JN invariant. It is enough to check
that the infinitesimal generator LN leaves JN invariant. Given S and a we
say that a communicates with a if a = a' for some ie {1,..., N}. This will be
denoted o~o.

Let (o e IN, and o e fN, then by (2.3) we have, if mN is such that
..MN(a) = mN



which depends only on (m^,mN) and m and not on the particular a that
realises mN = MN(a\ which is what we wanted to check.

That is, we can define the operator yN on the set of real valued
functions on MN by: [yN<j>~\(mN} = [LN(j>~\(mN((j}) if a is such that mN =
mN(a). It is immediate that this operator is symmetric. The fact that the
associated Dirichlet form is given by (2.25) is a little more lenghtly to
check and it is done in the appendix.

Therefore we get that the continuous time Markov Process mN(t),
image by the map JfN of the Markov process a(t) is the Markov process,
with trajectories in D [R + , .4^], the set of cadlag ,MN valued functions,
and transition functions given by
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does not depend on the particular a that realises mN = J(N(a), (or what is
the same is constant on the set of realizations a such that MN(a] = mN), we
get that for any (/>e.-/N, LN(j> depends only on mN that is LN leaves JN
invariant. To check it, note that if m ~ JfN(a] then there exists an unique
pair (t 'l, £ 2 ) e { — 1, + I}2 such that

and also it is easy to check by inspection that

We used the same symbols for the dynamics on the spins and for the
dynamics on the parameters mN since the former one will be not used
anymore. Note, in particular, that from the previous computations we get

here, a is any configuration in f/N such that ( m ^ ( a ) , m N ( a } ) = (m + , m ).
As we have seen, Pt[m,m] does not depend on the particular a that
satisfies (2.34) since this is true for the infinitesimal generator.

Moreover the forward equation has the form: for all real valued function
/ on J(N



and define T2 analogously.
Since LN is negative it is natural to consider —yN, and notice that 0

is an eigenvalue of yN and the corresponding eigenvector is the constant
function that we can take equal to 1 everywhere. More generally, we
consider the spectral decomposition of — <£N that is we consider the set of
eigenvalues Ai = Ai for i = 0,..., \MN ordered in such a way that 0 = A$^
Af^ ••• ^A^f |. We normalize the eigenvectors q>? is such a way that
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and the Markov process m(t) = (m^(t),mN(t)), starting m&.MN is com-
pletely determined by

for OsS/,^/2--- ^tn.
The following subsets that are discrete versions of the basins of attrac-

tion of the absolute minima ml are of importance for the study of the
metastability:

and

at last

Since we are interested in the limit N s oo we make the convention that
A? =ao \U>\J(N\.

Let us call y%, the infinitesimal generator of the proccess starting in
Tf and killed at the time TN = M{t >0 : mN(t)edTf}. ,5?£is the operator
on L2(ff , &1N) where



The corresponding eigenvalues will be denoted AiK for i>1, with the
convention that Af~K = oo if / is larger than the rank of the matrix y1^.

Let us call LN, the infinitesimal generator of the process starting in
rf and reflected on Tf, that is we supress all the jumps that arrive outside
ff. &% is the operator on L2(T^/S\} whose Dirichlet form is £1N(V, V]
defined in (2.43) with domain {</>: Tf -+ R}, that is Neuman boundary con-
ditions. The eigenvalues of — ^f* will be denoted by A?'R for /^O with the
convention that AN,R= oo if i is larger than the rank of the matrix yR.
The eigenvectors will be denoted by ON, R, for i>O and normalized in such
a way that
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and

whose Dirichlet form is

also (PQ-R = \ and ^^-^ = 0.
Using the spectral decomposition, we have

and the domain of the Dirichlet form is {fr.Tf-* U; <j&(m) = 0, medT1?}
that is Dirichlet boundary conditions. The eigenvectors of — ^^ will be
denoted by <p?'K for /^l with the convention that q>^'K>Q and nor-
malized in such a way that

Moreover, using the fact that the process mN(t) before rN coincides with
the killed process, we get



Now we can state our main results. The first result is an rough
asymptotic estimate of the exit time of the basin of attraction of mt. An
analogous result is true for the case of m2.

Theorem 2.1. Let rN = i n f ( t > 0 : mN(t)e TN) be the hitting time
of d T f . Then for all S>0, P-almost surely, for all sequences, mN-> m such
that for all N, mNe Tf, meT} and &(m) <,F(w0), we have

This suggest that the right time scale to see interesting behaviors is ea/w

where a is a new parameter. Depending if a < JJ*" or a > A3F the stochastic
process have two different behaviors. In the first case starting in the basin
of attraction of m1; the system relaxes to m1 and has not enough time to
exit this basin of attraction. In the second case the process is at equilibrium.
However due to the randomness of the equilibrium Gibbs measure, very
interesting phenomena occur. In particular depending if we are interested
in results that are true P-almost surely or just in P-Law, the stochastic
process has a different behavior. The first simple case is when a < AS'.

Theorem 2.4. If ? = e*ftff with a < A&, then P-almost surely, for all
continuous real function ¥ on [ — I, + 1 ]2, for all sequences, mN^>m such
that for all N, mNe T", we T, and J*(m) <&(m0), we have
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The second result is the exponentiality of the exit time of Tf, a similar
result holds for the exit time of T%,

Theorem 2.2. Let A"-K>0 be the first eigenvalue of — .£?*, minus
the infinitesimal generator of the process, killed at time TN, then P-almost
surely, for all sequences, mN-*m such that for all N, mNe Tf, m e 7, and
J r (m)<&(m 0 ) , we have, W>0

As we will see, these results are a consequence of

Theorem 2.3. P-almost surely



We emphasize that this result holds P-almost surely, even if, as we will
see later the quantities ^N(V) does not converge P-almost surely but just
in Law.

The next result is about the convergence of the one dimensional
marginal of the process mN(t), this is the metastable behavior of the
system. This is also a P-almost sure result.

Theorem 2.6. P-almost surely, for all bounded continuous real
function ¥ on [ — 1, +1]2, for all mNeJ$N, such that mN->m with
3?(m) < ^(m0), for all t > 0
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In other word, the one dimensional marginal of the process on this time
scale converges P-almost surely, weakly to a Dirac mass at the minimum m t.

The other case is when <x > A3F the first result is a P-almost surely one.

Theorem 2.5. If t = eaffr with a > A&, then P-almost surely, for all
continuous real function f on [ — 1, + 1 ]2, for all mNeJ/N

A rough asymptotic estimates for /if is given in the following

Theorem 2.7. P-almost surely

This ends the dynamical results, the next two results are static ones,
and show that the measure ^N has not a very nice P-almost sure behavior,
however the P-in Law behavior is nicer. Similar fact was observed for
differents measures in ref. 4 and 37.

Theorem 2.8. P-almost surely, the set of cluster points of (SN is the
set {A(n)(5mi + ( l - A ( n ) ) < J m 2 : n e Z} where

for some r = T(B, 9).



It is immediate that the constant vector equal to 1, 1, is an eigenvector
with eigenvalue 0 and &N( 1) = 1. By using the variational characterization
of eigenvalues we have the following variational formula for the first eigen-
value. It is also the spectral gap.

where the infimun is over the set of real functions on MN. The first result is

Proposition 3.1. P-almost surely
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The only possible convergence is a convergence in P Law to a random
convex mean of two Dirac measure, namely

Theorem 2.9. In P-Law

where P(A = 1) = 1 - P(A = 0) = \.

3. SPECTRAL PROPERTIES

In this chapter we collect all the spectral properties we need for
proving the main theorems.

3.1. Asymptotics for Spectral Gaps and First Eigenvalues

Consider first the operator — £fN, its Dirichlet form is

Proof. Upper Bound. We first give an upper bound on /if'. Using
(3.2) it is enough to choose a trial function. After that, we have to find a
lower bound for the variance and an upper bound for the Dirichlet form
evaluated on this trial function.
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We take «F = 11 T» -1 TN here

we will need also

and

Note that T^n 7^ = 0 and T°-NnT'?=0. Let us define

Then, using an integral to denote a discrete sum over J(N.

where the last steps follows by expanding the square and some easy
algebra.

Using the following lemma, that will be proved in the next chapter,

Lemma 3.2. P-almost surely, for / = 1, 2

it is enough to prove that
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to get the wanted upper bound. We have

Since Y = ^TN — \ T N , it is easy to check that

where AN={(m,m):m~m, \m+ +m |<3/W} is the 3/N neighborhood
of the diagonal A in J/N, we get

now we use the following lemma that will be proved in the next chapter,

Lemma 3.3. P-almost surely, for all mNeJtN such that, l im^f^
mN = me[-l, +1]2, lim,,Too &N(mN) = &(m).

And we get, for all 6 > 0 with P-probability 1, for all but a finite num-
ber of indices Af,

The point is that the subset of P-probability 1 where the previous
estimates is valid does not depends on m nor mN.

On the other hand by restricting the set of configurations to a suitable
neighborhood of ml and using the Lemma 3.3, we get

Therefore, collecting (3.13), (3.14) and (3.15) we get, for all 6>0,

with P-probability 1, for all but a finite number of indices N. This leads to

P-almost surely. Note at this point that here and later, we will write
estimates in a slighlty incoherent way. That is, errors terms coming from



approximating the function Jv by its continuous limit F are always bigger
than entropy term coming from the number of points in some subset of
MNyN those ones being always some polynomial in N. However, it seems
to us that this way of writing makes the arguments easier to understand.

Lower Bound. To get a lower bound on the spectral gap, recalling
(3.2), we make an upper bound on the variance, keeping in mind to
reconstruct the Dirichlet form. The point is that this has to be done
uniformly with respect to the function ¥, since we want a lower bound on
an infimum over such functions *P. We start with

Therefore, we get
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Note here that the previous sum is over all pairs in M2N, while in the
Dirichlet form the sum is only over all communicating pairs, so the first step
is to express the difference Y(m)— 'P(m) in term of communicating pairs.
That is to introduce for any pair m, meJ{2N a path ym,m = ym m- That is
ym,m'- [0. 1] -*• <MN ar>d 7m,m(^) = m- This path will be piecewise constant
and will jump at the times ti = i/( 2N) for /^ 1 to a point in J(N that com-
municates with the point y m > / B (? ,_ i ) . The path will be self avoiding. Since
it jumps 2N times, it is possible to reach any point m starting from any
point m. If it is not necessary to use all the 27V steps to reach m, we stop
the path when it reaches m and stay there. If we specify only that, there are
a priori a lot of different choices of paths that can be done. The point is
that we have a complete freedom to choose those paths and the good
choice is related to the specific problem we handle. A bad choice will give
just useless estimates. Extra conditions will be imposed on the paths later.
What is important is that we can write

and by convexity
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Note that we have not already reconstructed the Dirichlet form, to do it,
we use the following simple

With the convention that when the last term in the square root is 0, the
product of the last two terms is 0, which is compatible with the left hand
side of the inequality. Inserting (3.22) and (3.21), we get

The last two lines does not exceed

where the term (2N+ 1)3 comes from the number of terms in the triple
sum. Now we have reconstructed the Dirichlet form and putting together
(3.23) and (3.24), we get

We can bound from below the partition function by restricting the
spin configurations such that mN(a) are in a suitable neigborhood of m1.
That is, we have for all S>0 , with P-probability 1, for all but a finite of
indice N,



where H - H t is the f1 norm in MN. Therefore, using Lemma (3.3), we get,
for all S >0, with P-probability 1, for all but a finite number of indices N,
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It remains to estimate the supremum in (3.25). It is at this point that the
choice of the paths is becoming crucial. First note that we have by con-
struction

Taking the term coming from the lower bound (3.26) together with the
supremum in the right hand side of (3.28), we have to estimate

It is precisely here that the choice of the paths is crucial. As the reader can
check, different choices will leads to estimate that are true but rather poor.
We will say that a path ym>*(0 passing through m',m" is .^-decreasing
from m' to m\ if .^()>m,m(M ̂ (iV,, *(t2) for all t ( m ' ) t 1 ^ t 2 ^ t ( m " )
where ym, m(t(m')) = m' and ym, m(t(m")) = m". The definition of F-increasing
being immediate. Let first take as path from m\ to m2 the path passing
through m0 which is .^-increasing from m1 to m0 and F-decreasing from
m0 to m2. For this path we have

It remains to construct all the other paths in such a way that the previous
one is the maximazer. Let us consider the case where m and m are in the
basin of attraction of m1, i.e., are in T1 (the case of T2 being similar). We
can assume that F ( m ) > F ( m ) , then we choose for the path ym>m a path
which is F-decreasing from m to m. With this choice, we get



It remains to consider the case where m e T1 and ni e T2, we choose a path
which is F-decreasing from m to m1 (and stay in T1), then the path is
F-increasing from w, to m0, then it is F-decreasing from m0 to m2 and is
in T2, at last it is F-increasing from m2 to m and stay in T2. Consider first
the case where sup0<rs;1 ^(ym^(t)) ^^(m0), we can assume that ^(n\) ^
^(m), the other case being similar. Then we have sup0</<| &(}'m,«(')) —
J^fm) = 0 by construction, therefore

and this end the proof of the Proposition (3.1).
We consider now the operator — LN, that is minus the generator of

the process reflected on T*, this correspond to Neuman boundary condi-
tions. It is immediate that the constant vector equal 1^ is an eigenvector
with eigenvalue 0. Calling C^, the normalized Gibbs measure restricted
to Tf. We have 0^(11 r*) = 1. The spectral gap is given by
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Now let us consider the case where supo^,^ ^(}'m,m(t))^^(m0), then,
by construction, we have supo^,^, ^r(ym,lfl(t)) = ̂ (m0), and we get

Collecting what we have done, we get, for all 6>0, with P-probability I,
for all but a finite of indices N,

where the infimum is over the set of real function on T1. Here we have

Proposition 3.4. P-almost surely
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here m is such that F ( m ) = infm e B ( m 1 ) (F(m). To get the last bound we
have used the fact that in the Dirichlet form, m~m implies ¥p(m) —
W p ( m ) = 0 only if me B^m^ and m e Bp(m1) n T1 and this give the factor
\dBp(mi)\. Recalling that the variance is a sum over all pairs m and m, a
lower bound for the variance is obtained by restricting the configurations
to those ones where m = m and m = m1. Now we can use, for all S>0, with
IP-probability 1, for all but a finite number of indices N,
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Proof. The proof is completely similar to the one of the previous
Proposition. We just mention here the differences. First of all, we have, for
all <S>0, with P-probability 1, for all but a finite number of indices N,

Here we choose the paths ym.m(t) such that ym,m(t) E T1, and &(ym,A(t)) ^
3F(m} v &(m) then we have

which implies that for all <S>0, with P-probability 1, for all but a finite
number of indices TV

from which we get, P-almost surely

To get an upper bound for A?'R, we consider the trial function Vp =
H f l f m , ) — H f i c ( m , ) where B p (m 1 ) is a ball of radius p centered at m1, for some
p to be chosen later. We have, for all p > 0, with P-probability 1, for all but
a finite number of indices N,



Therefore, collecting (3.41) and (3.42), we get, P-almost surely
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Now, (3.40) and (3.43) implies (3.36).
We consider the infinitesimal generator of the process killed when it

reaches T1 This correspond to Dirichlet boundary conditions. Here the
first eigenvalue of — Ln is given by the variational formula

Proposition 3.5. P-almost surely

Proof. Here also the proof is similar to the one of the Proposi-
tion 3.1. For the lower bound we make a path argument as before. Taking
into account that the infimum in (3.44) is over the set of real functions
such that ¥\dTN = Q, we take a path ?„,&(()eT" such that m = ymffl(0),
m = Y m , m ( 1 ) edrf with |yMi*( 1) -m0\ ^4/N since ¥ ( Y m , m ( 1 ) ) = 0 we have

Making exactly the same estimates as before, we get, for all 6 > 0, P-almost
surely, for all but a finite number of indices N

where the infimum over m e dT^ comes from the fact that we can choose
the final point as we want, in particular the one that minimizes the quan-
tity that comes into play.

We choose for the paths, an J'-increasing ones from m to m0 if
g'(m) ^ &(m0) and an J^-decreasing ones from m to m0 if ,¥(m) ^ ^(m0).
It is easy to check that we get after minimizing on the point medT", using
F(m) >F(m1)



To get an upper bound for AN, K, we take as trial function W =
H{m*a7f}- We make first an estimate from below of the L2fTf, <S\I) norm
of this trial function. We have

Now we make an estimate from above of the Dirichlet form. With our
choice of V, we have *P(m) - Y(m) = 0 except if m e dTf and m e T^\dT^
or the same with m exchanged with m, let us call 3N this set, there
(¥(m) - y(m))2 = 1, therefore for all d > 0, with P-probability 1, for all but
a finite number of indices N

since we have, for all 6 > 0, with P-probability 1, for all but a finite number
of indices N
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Collecting (3.47) and (3.48) we get, P-almost surely

But

we get

since for all J > 0, P-almost surely for all but a finite number of indices N
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Collecting (3.49) and (3.57) we get (3.44) and this end the proof of the
Proposition.

3.2. Asymptotics for the Second Eigenvalues

We consider the second eigenvalues of — .£?* and —Z£N. Using the
minimax characterization of the eigenvalues, we have

where the first inequality follows by choosing as function (p (m) = \m^dTN.
But the right hand side is just the variational characterization of the mini-
mal eigenvalue of minus the infinitesimal generator of the reflected process
on ff, using (3.39) we get, for all <5>0, with P-probability 1, for all but
a finite number of indices N,
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Therefore, using (3.54) and (3.55), we get for all S, with P-probability 1,
for all but a finite number of indices N

which implies, P-almost surely,

We consider now the second eigenvalue of —1£N. Again by the varia-
tional characterization of eigenvalues, we have
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Here the supremum is over V that are two dimensional subspaces of
L\JtN, fSN). Taking 'V = span(1 T», 1 T»), the two dimensional subspace
generated by those two vectors, *F 1 ~f" means just

We want a lower bound for A%, that is we want a upper bound of
^vCF2) in term of the Dirichlet form. We have

where /if- *•' is the first eigenvalue of minus the infinitesimal generator of
the process reflected on T* for i = 1 and reflected on T2 for i = 2. It follows
from (3.39), and corresponding modifications for the case i = 2, that for all
6 > 0, with P-probability 1, for all but a finite number of indices N,
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here fS2N is the (normalized) Gibbs measure restricted on T2 that is for any
V real valued function on T2,

with

Since there are some double counting in the diagonal. Using the
orthogonality condition (3.61) we get

Now the crucial observation is that for i = 1 or i = 2
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from which we get

where we have used the simple fact that

Therefore, for all 6 > 0, with P-probability 1, for all but a finite number of
indices N,

3.3. Estimates of the First Eigenvectors w1

Let w1 be the first eigenvector of the infinitesimal generator of the
process killed when it reaches d T 1 . Taking into account of (2.47), it is
clear that to get (2.49) we need to prove that w1 converges to 1 in the
sup norm. That is we have to find an Lco(Mv, &N), L2(JfN, fSN} estimate.
We already know that w 1 ( m ) > 0 and

the result of this subsection is the following proposition

Proposition 3.6. With P-probability 1, for all mNeT" such that
lim^oo mN = m and ^(m) <^(m0),

Proof. Let us first remark that, with P-probability 1,

This follows from (3.71) using the fact that,
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by convexity. We make a path argument as before and write

Now, again by convexity, using (3.22), we get
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Now recalling that for all Y, see (3.37) and (3.39),

and moreover, since £lN((p¥'K, (pf'K} = A"'K we get

where we have used (3.45). On the other hand by the Schwarz inequality

therefore, collecting (3.76) and (3.77) we get (3.73).
To get an uniform estimate, using (3.73), we start with



For all 6 >0, with P-probability 1, for all but a finite number of indices N,
the last line is bounded by
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where we have used the fact that <pf'* is an eigenvector and the estimate
(3.56) for the corresponding eigenvalue. Therefore we get

It remains to make a good choice of the paths ymN,mN(tt}- ^mN is sucri
that ^(mN}^$'(mN) we choose for y m N , m N ( t i ) a F-decreasing path from
mN to mN. Therefore, we get, in this case, for some n >0, if A' is large
enough

where we have used at the last step that .^(m) < F ( m 0 ) to get the — 2n.
If mN is such that F ( m N ) > F ( m N ) we choose for ymN, mN(ti) a

F-increasing path from mN to mN. Therefore, we get, in that case, if N is
large enough

Inserting (3.83) and (3.84) in (3.82), for all n>0, choosing o < n/12, with
P-probability 1, for all but a finite number of indices N, we have

from which, using (3.73), we get (3.72) and this ends the proof of the
Proposition 3.6.



3.4. Estimates on the Eigenvectors

In this subsection we give a rough uniform estimate on the
U°(MN, ^N) norm of the eigenvectors of the infinitesimal generator of the
killed process. This is a general L™(J(N, ^N), L2(,^N, <&N) estimates. 

Proposition 3.7. For all <$>0, with P-probability 1, for all but a
finite number of indices N, for all V real valued function on MN

Proof. First note that, given mN e MN, we have, for all d > 0, e>0,
with P-probability 1, for all but a finite number of indices N,

This implies

from which we get (3.86) immediately by choosing for mN the point where
the sup in (3.86) is realized and then p | 0.

4. STATIC PROPERTIES

In this chapter, we prove all the results we need for the equilibrium
measure. We were unable to find all of its in the literature, even if similar
computations were done by anyone who work in this subject, in particular
in refs. 3, 4, and 37. We will start with regularity properties of the "canoni-
cal" free energy. Let us recall, see (2.17), that
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where || • ] ||2 is the L 2 (m N , <&N) norm and
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We use Stirling's formula as given by Robbins,(59) valid for n > 1:

with

and we get

where I(x) is defined in (2.19) and

Proof of the Lemma 3.3. It is easy and standard that for all x > 0,
we have

therefore, for all p > 0

Given e> 1/N, say smaller than e ', let us consider m+ e {p£ — (2k)/N,...,
p^} for k/NXE, since we have extended I(x) by 0 for x> 1 we have, using
the first Borel-Cantelli lemma, for all but a finite number of indices N,
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for some positive constant c, by choosing p>2. On the other hand for all
0 < y < I and all x > 0, y > 0 we have

putting together (4.8) and (4.9) we get, for all e>0, 0<y<l, P-almost
surely for all but a finite number of indices N

To control S"N(m^) when 1 ̂ k^sN, it is easier to use another inequality,
namely

therefore, if k^eN, for some positive constant c, with P-probability 1, for
all but a finite number of indices N, we get

for some positive constant c, choosing p > 3, since there are no more than
(2jV+ I)2 points in MN. Now it is easy to check that, if ( m ^ ) / ( p ^ ) =
1 - (2k)/(Npx) and k^eN for some e > 0 then with P-probability 1, for all
but a finite number of indices N



4.1. Convergence of the Measure GN

In this subsection we consider the static problem related to the con-
vergence of gN. Similar estimates where done in refs. 3, 4, and 37 but
without such an almost sure control and for the empirical magnetization
instead of the two empirical parameters mN,(o) and m2N(o).

We consider the Laplace transform ^[exp^/njj (a) + Ca"'w ( f f ) ] and
we want to study the convergence to aec m1 + (1 — a) ec m2 where a are
random variables.
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It remains to consider the square root term in (4.4), when |1—( m + \)/
(Ptr)\ 5=e^ 1/N we have, with IP-probability 1, for all but a finite number
of indices N,

Collecting (4.10), (4 .11) , (4.13) and (4.14) and making easy estimates, we
get the Lemma 3.3.

Proof of the Lemma 3.2. We have to estimate (SN(]T«,N) from
below. We have

Using the Lemma 3.3, we get, for all 6 > 0 with P-probability 1, for all
but a finite number of indices N,

since the two minima m, and m2 of & are quadratic, and F ( m 1 ) = F ( m 2 )
moreover

therefore inserting (4.16) and (4.17) in (4.15) and making simplifications,
we get, for all 6>0, with P-probability 1, for all but a finite number of
indices A',

This ends the proof of the Lemma 3.2.
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It is convenient to study the following unnormalized version of the
previous Laplace transform.

The main result of this section is the following lemma

Lemma 4.1. For all e>0, on a set QN, of P-probability not
smaller than \-2e~l?/2(losN)2,

where

and SAT—Z<Li hi. Before proving this lemma, let us mention its important
consequences. It implies that the difference gN — (aNSm + (1 — OLN) 8m^
converges weakly to zero, P-almost surely. The argument is the following:
Let B= \JN r\M»N&M> it follows from the first Borel-Cantelli lemma that
P(B) = 1. Let us denote VN = y.N 8m^ + (I — a.N) 6m2. Since the set of measure
on [ — 1, +1 ]2, non necessarily positive but with total mass bounded by 2,
is weakly relatively compact, the sequence g N — v N has convergent sub-
sequences. That is, for all w e B, for all vxe^^f(^N—vN), the cluster set of
the sequence gN— VN, for all e > 0, for all (j> that are continuous real valued
function on [ — 1, + 1 ]2, we can find Nk = Nk(w, E, o) such that

This is true in particular, for </> = ef'm, therefore, using (4.20), we get that
for all vaoe'tf£'('&ff-vN) the Laplace transform v00(ec m)=0 on B. This is
also true, for a given real sequence L,p that converges to zero and that is in,
say 0 < R e £ < 1. On the other hand using (4.20), it is immediate that for
all cluster points v^, v^t^"1) is in fact an analytic function in the variable
C in the strip 0 < Re < l. Since v00(el-i>'") = 0 for a real sequence L,P that
converge to zero, v^e*-™) vanish on the strip, in particular, on the pure
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imaginary axis, therefore all the Fourier transforms of all cluster point are
identically zero, and this implies that all the cluster points are equal to the
null measure, P-almost surely.

Proof of the Lemma 4.1. Using the formula of the Laplace trans-
form of a Gaussian measure and making easy computations we get

where

Let us denote by

and

Note that if we call SN = £f=, hi, we get

The fundamental fact is that g( — z) = —g(z) for all ze R. Let us introduce
the following quantities
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where

and

Let us first estimate AHF$(z, £). Using the Taylor formula, we have

Therefore, if we denote

we get

By similar arguments we have, for some positive constant c



Random Field Curie-Weiss Model 717

The probabilistic estimate we use is the following, for all e > 0

Therefore, for all e > 0, with a P-probability not smaller than 1 _2ee2/2(logN)2,
we have, uniformly with respect to z e R

That is, we can replace in (4.23) O N ( z ) by F*(z)+ z)J* ,*(z)+
y(z, ^}/Nfi in the sense that if we call

then, for all e>0, with a P-probability not smaller than 1 -2e-e2/2( logN)\
we have

It is easy to check that in the region of parameters B, 0 we consider,
the function F*(z) has three critical points, 0, z*, — z*, where z* is the
solution of the equation

The important fact is that

satisfies (d2F*(z)/dz2) = (d2&*( -z)/3z2) for all z e R. Moreover, we recall
that m,+ =^tanh(Bz*+B0), m,~ = \tanh(/?z*-/f0) and (4.32), therefore
we have
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and /_ is the very same integral but over z < 0.
We need at this point a careful study of this integral. First we want to

control an almost sure behavior, moreover, what we are interested in is the
ratio L1N(£)/L1N(Q) and we want to take into account of some nice cancella-
tions that occurs. This is not really difficult but it is rather long to make
all the details. Let us first notice that, by using the Taylor theorem, we get

Note at this point the important fact that, the quadratic form that
appears in (4.44) can be written

It is useful to write

Where i+ is just
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where

and
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After a simple change of variables, it remains to estimate a Gaussian
integral
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and therefore that the center of the Gaussian is shifted by a random term
that is going to zero almost surely, and also the covariance is shifted by
such a similar term. Consider, for a given £n, to be chosen later

Using (4.44), the term corresponding to (z-z*)3 gives a contribution
which is not bigger than Ns3N this suggest to take EN = (eN)/(N1/3) in which
case we get that the term [^"(z, ()-^(z*, ()] is not bigger than ft IKH^.
Therefore we get, for all e>0, with a P-probability not smaller than
J  _ 2 e - " 2 / 2 ( l o g A ' ) 2

here BN = BlNr\ B2N with

and
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We consider /+(%) the other one being similar. Since 2F* has a quadratic
minimum at (*, there exists a constant c(B, 0) such that
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On the set GN={\SN/N\ <e(log N/^N)}, it is easy to check that

and therefore, by inspection on the set GN, we have

Making similar computations, it is easy to check that on the set GN

for some positive constant c.
Collecting (4.54) and (4.55) we get that on GN

Exactly the same computations can be done for I_(EN) and we get
on GN

The point is now that Am^ = -Am^ and J^*"(z*) = &*"( -z*} as it can
be checked easily.

It remains to estimate two Gaussian integrals,
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and a constant c(B, 0) such that

therefore we get

On the set GN, we have

Therefore if EN is chosen in such a way that

for some C to be chosen later, we get after some easy estimates that

Therefore taking t large enough, on GN, we have

here

Recalling (4.38), we get, on GN

which is what we wanted to prove.
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5. PROOFS OF THE THEOREMS

Proof of the Theorem 2.1. Let a > AF, then using (2.47), we get

using now (3.86), (3.59) together with AN,K>AN,K for all k ^2 and (3.50)
we get, for all d > 0, with P-probability 1, for all but a finite number of
indices N,

which goes super-exponentially fast to zero if 6 is chosen small enough.
Now, let a < A F , we want to prove that

Note first that

Using now the L°°, L2 estimates (3.86), we get that the right hand side of
(5.4) does not exceed

where || • ||2 is the L2(T^, *Sf) norm. Using now the spectral decomposition
of the semigroup we get

Using now, (3.59) we get

that diverges with N. Therefore the right hand side of (5.4) does not exceed

that goes to 0 when N^ GO.
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On the other hand, using the Proposition 3.6 and lim^,,^ e A>' ffa/"* = \t
we get (5.3) and this end the proof of the Theorem 2.1.

Proof of the Theorem 2.2. Using the spectral decomposition we get

Using the Proposition 3.6, (3.73) and the Proposition 3.7 together
with the following estimates, for all S>Q, with P-probability 1, for all but
a finite number of indices N

which follows from the Proposition 3.5 and (3.59), we get (2.49). We have
also used the fact that AN,K^ A%•K for all i^l.

Proof of the Theorem 2.3. The Theorem 2.3 is nothing but the
Proposition 3.5

Proof of the Theorem 2.4. Recall that the starting point of the
process mN(t) is in T". Let ¥ be a continuous real valued bounded func-
tion on ,.#„, then if tN = e^N with a < A&,

The last term is bounded from above by

and the last term goes to zero by (5.2). It remains to consider the first term
in the right hand side of (5.11). Since on {tfj<rN}, the process mN(t) and
the process m^(t) reflected on ff are equal we have, using (5.12),
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Now using the spectral decomposition of £?*, we get

where we have used (3.86). Now since, for all <5>0, with P-probability 1,
for all but a finite number of indices N,

for all i > 1, we get

which goes to zero when N / co. On the other hand q>%>R=\ and A$N,R = Q
therefore we get immediatly, P-almost surely

Therefore to get (2.51) it is enough to prove that, with P-probability 1,

but this is easy to prove.

Proof of the Theorem 2.5. Let tN = ex/iN with a.>/)^. We use the
spectral decomposition of the semigroup associated to the process mN(t),
to get

Now, since by Schwarz inequality,

we get, for all 6>Q, with P-probability 1, for all but a finite number of
indices N,

and this end the proof of the Theorem 2.5.
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Proof of the Theorem 2.6. Let us start with the formula (2.46), we
have, for all /' > 0

In particular, if we take t' = t/A1 with t > 0, recalling (3.70), we get

Note that the terms e K^i)' are super-exponentially small in N,
therefore using the Proposition 3.7, the last sum in the right hand side of
(5.23) is also super-exponentially small in N.

To estimate the term o i ( m N ) g N ( w o 1 ) in (5.23), we make a short time
argument as follows:

If in (5.22), we take t' = eaBN with a < AF, we get

for some positive constant c. Using the Theorem 2.4, the formula (5.23),
and the triangle inequality, we get for all E > 0, with P-Probability 1, for all
but a finite number of indices A',

therefore, for all e>0, with P-Probability 1, for all but a finite number of
indices N,

and this ends the proof of the Theorem 2.6.

Proof of the Theorem 2.7. The Theorem 2.7 is nothing but the 
Proposition 3.1.

Proof of the Theorem 2.8. The proof of the Theorem 2.8 is imme-
diate from (4.65) and (4.66).
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Proof of the Theorem 2.9. The proof of the Theorem 2.9, is also
easy. Since for all K limNIF P[|SN| <K] = 0, we get, for all E>0, limNIF

P[e<AN(B,T)<1-E]=0. By symmetry we have P[AN(B,T)>1-E]
= P[AN(B,T)<E], therefore we get limNIF P[AN(B,T)<E] = 1/2 =
limNIF P [ A N ( B , T ) > 1 — E], which is what we wanted to prove.

APPENDIX. THE DIRICHLET FORM OF <LN

In this appendix we want to check that the Dirichlet form defined in
(2.25) is the one associated to LN.

To simplify notations let us introduce more definitions. For any P real
valued function on LN, and (E1, E2) E { — 1, + 1}2, let us call

and note that the upper index £2 = +1 corresponds to right or left discrete
derivative and £, = +1 correspond to the first or second coordinate.

With these notations the infinitesimal generator yN is explicitly given by

We will drop out all the TV dependences when it is possible, to simplify
the formulae. We have
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We fix a pair (e,, £2) and perform the change of variables

Note that, this is possible except for m8> = — E2/?jv (we will be outside MN)
but such a term does not appear because of the nice factor (K2m^ +Jo^)/2
in front. Moreover

Therefore we get, for (EI, s2) given
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Now we use the crucial but elementary fact that

therefore the right hand side of (2.39) is equal to

and we recognize here, that for all but the term w and the minus sign in
front of the VE1 we have the term corresponding to the right hand side of
(2.38) taken for the pair (e1, -e2) therefore keeping half of terms of the
right hand side of (2.38) as they are and making the previous change of
variables for the other half we get after collecting
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Now we want to write the previous formula in a slightly different form
to express the last three factors in term of the free energy functional FN see
(2.17). To do this, we use again the equation (6.7) to get

inserting (6.10) in (6.9) and after identification we get

Note the presence of the terms into the square root. If m e MN and
m~m, recalling (2.32), let us denote
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